A mesoscopic stochastic model for the specific consumption rate in substrate-limited microbial growth

نویسندگان

  • F J Arranz
  • J M Peinado
چکیده

The specific consumption rate of substrate, as well as the associated specific growth rate, is an essential parameter in the mathematical description of substrate-limited microbial growth. In this paper we develop a completely new kinetic model of substrate transport, based on recent knowledge on the structural biology of transport proteins, which correctly describes very accurate experimental results at near-zero substrate concentration values found in the literature, where the widespread Michaelis-Menten model fails. Additionally, our model converges asymptotically to Michaelis-Menten predictions as substrate concentration increases. Instead of the single active site enzymatic reaction of Michaelis-Menten type, the proposed model assumes a multi-site kinetics, simplified as an apparent all-or-none mechanism for the transport, which is controlled by means of the local substrate concentration in the close vicinity of the transport protein. Besides, the model also assumes that this local concentration is not equal to the mean substrate concentration experimentally determined in the culture medium. Instead, we propose that it fluctuates with a mostly exponential distribution of Weibull type.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Growth Kinetic Survey in Direct Biological Sweetening of Natural Gas in Batch Bioreactor: Temperature Studies

The present study is focused on biodesulfurization of natural gas in a batch culture using active microorganisms. The microorganisms used for the removal of hydrogen sulfide were obtained from a hot spring. The experiments were conducted with mixed gas at operating temperatures of 25 to 45°C with a time interval of 5h. Two kinetic models included Logistic and Monod models in a batch culture wer...

متن کامل

Phenol Biodegradation Kinetics in the Presence of Supplimentary Substrate

Biodegradation of phenol in the presence of glucose as a supplementary substrate was investigated with mixed microbial consortium isolated from waste effluent of coke-steel factory. Batch experiments were carried out at room temperature and pH value of 7. Initial phenol and glucose concentrations were in the range of 25-1000 mg/l and 500-3000 mg/l, respectively. In a dual substrates system the ...

متن کامل

Modeling and Performance Evaluation of Energy Consumption in S-MAC Protocol Using Generalized Stochastic Petri Nets

One of the features of wireless sensor networks is that the nodes in this network have limited power sources. Therefore, assessment of energy consumption in these networks is very important. What has been common practice has been the use of traditional simulators to evaluate the energy consumption of the nodes in these networks. Simulators often have problems such as fluctuating output values i...

متن کامل

Dynamic Model For Production of Biohydrogen Via Water- Gas Shift Reaction (RESEARCH NOTE)

In design of anaerobic bioreactor, rate equation is commonly used. Mathematical model was developed at steady state condition, to project concentration of gaseous substrate and product in biological oxidation of carbon monoxide with water to produce hydrogen and carbon dioxide. The concept of bioconversion was based on transport of CO from gas phase to liquid phase, as the CO consumption was in...

متن کامل

Dynamic Labor Market in a Dynamic Stochastic General Equilibrium Model: Case Study of Iranian Economy

The labor market, as one of the four markets, plays an important role in economic growth and development. So review developments in the labor market because of its close relationship with developments in other sectors is of great importance. This study tries to examine the dynamics of the labor market by adjusting for a New Keynesian dynamic stochastic general equilibrium model for the Iranian ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 12  شماره 

صفحات  -

تاریخ انتشار 2017